

 IT Development

Systems Development Methodology Handbook

Introduction

Iterative and Incremental Development

Glossary of Terms

Phases

Envisioning

Envisioning: Overview

Envisioning: Tasks

Envisioning: Artifacts

Planning

Planning: Overview

Planning: Tasks

Planning: Artifacts

Developing

Developing: Overview

Developing: Tasks

Developing: Artifacts

Stabilizing

Stabilizing: Overview

Stabilizing: Tasks

Stabilizing: Artifacts

Deploying

Deploying: Overview

Deploying: Tasks

Deploying: Artifacts

Appendix

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 8/14/05 8:09 PM | Contact Us

 IT Development

Introduction

The IT Development and Engineering Systems Development Methodology (SDM) Handbook is

a collection of tasks, artifacts, best practices, resources, and recommendations used internally

to create information systems for Liberty University.

How the methodology was created

Defining a systems development methodology for any development team is a

tricky venture at best. Systems development is a rapidly changing and complex

field. Compounding that is a sort of "methodology war" going on within the field

between various industry and academic groups, each claiming that they know the

best way to develop software and systems. "Just follow these three easy steps..."

or "Employ these tools..." or "Organize yourself in this fashion...". How does one

wade through all the books, articles, and slogans to employ an effective

methodology? To compound this, developers tend to have very strong ideas about

how they like to develop software and usually do not take well to anyone coming

from on high giving them directives about a methodology.

Our programming department has also undergone much change in the past few

years. From the late 1990's, when the department consisted of 2 people, to

2004, when it consisted of 12 people, and now as it consists of about 30 people,

the size of the department has radically changed. From developing utilities and

add-ons to be used with a third-party student information system to building full-

fledged applications on that platform, as well as applications on the web and the

University website, the nature of the software we are developing has changed

(and is changing still with the advent of Banner). Also, we are developing more

than just software now, with systems development, network engineering, and

image development groups. From single-developer teams who work directly with

one customer to multi-person teams, including developers, project managers,

customers, operations, and support personnel, the way in which we are

developing systems is changing as well. It became apparent that defining a

standard methodology for the department was critical to managing the

complexity and size of our undertaking.

In the Spring of 2004, Programming Services (our name at the time) at Liberty

University formed an internal task force that was charged with creating a

software development methodology for the department. That task force was

chaired by Jonathan Minter (Director of Programming Services) and its members

included Lori Baker (Project Manager), Darrell Hyatt (Developer), and Anderson

Silva (Developer).

The task force decided that the best approach for developing the methodology

would be to do it in an iterative, incremental fashion. Therefore, instead of

retreating to a hole for 6 months and emerging with a large, complex document

that is to be followed immediately, we would develop the methodology in small

iterations. This has all the benefits of iterative and incremental software

development, including rapid feedback, easier management, and delivery of early

value.

The basis for the methodology

Over the last several years, IT Development and Engineering had begun

researching and utilizing components of the Microsoft Solutions Framework (MSF).

This framework includes many models and bodies of knowledge that have been

gleaned from Microsoft's internal development and services groups. Specifically,

the we had begun to utilize the MSF Process Model, which includes a specific

description of the Software Development Life Cycle (SDLC) and various principles

for good systems development. Also, we began using the MSF Team Model, which

includes a team structure and roles to properly construct a project team.

Therefore, this methodology utilizes the MSF as the basis for the methodology,

including the Process and Team Models. Much of the content in the methodology

is adapted directly from the white papers found at http://www.microsoft.com/msf

The MSF endorses iterative and incremental development. We are also

incorporating agile development principles into our methodology. Therefore, we

are valuing individuals and interactions over processes and tools, working

software over comprehensive documentation, customer collaboration over contract

negotiation, and responding to change over following a plan (The Agile Manifesto,

http://www.agilemanifesto.org).

The goals of the methodology

At the onset of the task force, we identified certain outcomes that the task force should

achieve for IT Development and Engineering

The methodology should define areas of expertise and knowledge in which the

entire department should be proficient.

The methodology should be able to be succinctly communicated inside and

outside of IT Development and Engineering.

The methodology should enable communication among IT Development and

Engineering employees, customers, and other IS employees.

The methodology should be sufficiently flexible to handle all projects, large and

small, whether they are in house software development, implementation of a

COTS product, systems projects, network projects, or any other IT project.

The methodology should be sufficiently flexible to allow each project to tailor the

methodology to suit the specific needs of the project.

The methodology should support iterative and incremental development.

The structure of the methodology

In defining the methodology, we chose to create one page per phase in the cycle. Each

page has a similar structure.

Description of the Phase

Tasks and Artifacts Table

A table defining the various tasks that should be undertaken by the project team during

this phase as well as the artifacts that should be present after the phase is complete.

This table should serve as a quick reference guide for project managers each time they

enter and exit a phase.

Questions to Answer

A list of questions that the project team should be able to answer if they are done with

the phase. This can also serve as a cheat sheet for the project manager.

Milestones

The name and description of the milestone that will be hit when the phase is complete.

List of tasks and artifacts

Each task or artifacts will include a description as well as resources that would help a

team member better perform that task or create the artifact.

How to Change the Methodology

We view this methodology as a living document, always open to change. We view the

methodology as a tool to help us create better software, not something to be followed

blindly. Therefore, we should be constantly evaluating our methodology to ensure that

we are serving our purpose (creating software). Any areas of the methodology that are

not bring value to that goal should be stripped out or refined.

Suggestions for changes in the methodology should be given to the Director or any

person on the Methodology Task Force.

Next: Iterative and Incremental Development

Back: Table of Contents

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 8/14/05 8:25 PM | Contact Us

 IT Development

Iterative and Incremental Development

What is Iterative and Incremental Development?

The following discussion is adapted from "Agile and Iterative Development: A

Managers Guide" by Craig Larman.

Iterative Development

An approach to building systems (or anything for that matter) in which the

overall lifecycle is composed of several iterations in sequence. Each iteration is a

a self-contained mini-project composed of activities such as requiremens analysis,

design, programming, and test.

Incremental Development

An approach to building systems in which the final system is built by adding and

releasing new features, iteration by iteration. In this approach, the team does not

wait until the entire system is functionally complete to deploy the product to

users. It is deployed little by little until the feature set is adequate or funding for

new enhancements is removed.

How does that fit with our methodology?

This systems development methodology uses five primary phases (Envisioning

through Deploying). It is quite possible that a development team could take those

phases and take a waterfall approach to development (that is, a strict sequencing

of phases that is focused on fully completing each phase before moving on to the

next). In this scenario, if there are 12 months of features to be developed, the

development team takes 2 months for Envisioning, 3 months for Planning, 6

months for Developing, and so on.

That approach is not espoused by this methodology. Instead, this methodology

encourages splitting up the features into many iterations and deploying several

times during that 12 month period. There are two main ways to structure the

project using the MSF Process Model and iterative development:

One Envisioning phase and iterate over Planning through Deploying

With this approach, the project team will spend a large amount of time

Envisioning the entire project (i.e. all 12 months of development). The team will

structure the project, come up with a rough schedule, and plan out which

features go in each iteration. Then, they will embark on many iterations, basically

treating an iteration as Planning through Deploying. This has the benefits of

iterative development, without all the overhead and the "fuzzy front end" delays

of Envisioning.

Iterate over Envisioning through Deploying each Iteration

In this approach, the team treats each iteration as its own project. They cycle

through the all the phases as if they were starting the project over again. In

practice, the subsequent Envisioning phases will be shorter than the first one, but

the activities will still be performed. The advantage of this approach is that the

team makes sure they are not assuming too much or getting too far off track

from their original goals and structure of the project.

How long should an iteration be?

Again from "Agile and Iterative Development: A Manager's Guide".

In modern iterative methods, the recommended length of one iteration is

between one and six weeks. Each iteration includes production-quality

development, not just requirements analysis, for example. And the system

resulting from each iteration is not a prototype or proof of concept, but a subset

of the final system.

This methodology espouses an iteration length of 3-6 weeks. This has several

benefits:

It provides early value to the users. They are able to start using the system and

getting the benefit of the system as soon as the features are developed.

It provides early feedback to the development team. If the features developed

somehow do not meet the needs of the users, the developers become aware of

that shortly after developing the features. Those problems can be corrected

before moving on too far into the rest of the project (possibly with bad

assumptions). It ensures that the final system meets the users' true needs.

It gives the users confidence in the development team. When the users see

early, concrete features they can actually start using, it will inspire confidence in

the team. Also, if they provide feedback to the team and the product is changed

because if it (in the next iteration), they will feel that their voice has been heard

and they will take greater ownership in the product.

It provides for easier implementations. It is much easier to deploy a small set of

features (including deploying the code, converting data, training, writing users

manuals) than it is to do the entire system at once. If too many features are

delivered at once, critical activities (like full testing, users manuals, training) will

most likely be skipped because they are too labor-intensive.

It provides the University with flexibility for changing priorties. If priorities change

and resources must be diverted from a project, all the work done in the project

will not be lost. The development team has at least provided some value to the

users. Otherwise, 6 months could have been spent in development, with nothing

to show for it.

Are we agile?

Again, adapted from "Agile and Iterative Development" by Larman.

The hype around supposedly "agile" methodologies leave almost everyone claiming that

they are "agile". What does this mean?

Agile Development Defined

If agile methods have a motto, it is embrace change. If agile methods have a strategic

point, it is maneuverability. It is not possible to exactly define agile methods, as

specific practices vary. However, short timeboxed iterations with adaptive, evolutionary

refinement of plans and goals is a basic practice various methods share. In addition,

they promote practices and principles that reflect an agile sensibility of simplicity,

lightness, communication, self-directed teams, programming over documenting, and

more.

In short, this methodology espouses those principles, and the principles of the Agile

Manifesto without adhering to a specific methodology that classifies itself as agile (XP,

SCRUM, DSDM, etc.)

The Agile Manifesto

No, we aren't trying to overthrow any government or create a Communistic society. In

2001, a group of methodologists met to bring together the various "new"

methodologies that had been developed over the previous decade or so. They boiled

down the principles of those methodologies into a simple statement, now known as the

Agile Manifesto:

"We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more." (Agile Manifesto)

Next: Glossary of Terms

Back: Introduction

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 8/14/05 8:30 PM | Contact Us

 IT Development

Glossary of Terms

This section serves a glossary of many terms that will be used throughout this handbook. It

serves several purposes:

Assist in understanding of various terms in the discipline

Resolve discrepancies or ambiguity in terms used in different areas of the

discipline

Assist in creating a common language for the department

Assist our customers in understanding the terms we use in our projects

Artifact: Any document (physical or electronic) that persists after the project is completed.

Artifacts include items delivered to the customer (project plans, requirements, etc.) as well as

items used internally (design documentation, etc.)

Deliverable: Items created in the development process that are built for the customer.

Deliverables are defined by the team and are different for each team. Examples include

source code (and associated features), users manuals, etc.

Measurements: (also known as metrics) The collection of numeric assessments of a project's

success. Project success should be (if at all possible) stated in terms of objective, measurable

goals that leave no room for interpretation. For instance, a project measurement could be the

number of defects found after release of the product.

Methodology: A set of standards or protocols to follow when developing software. Typically,

the methodology will include an SDLC and associated practices for each phase. Methodologies

are also defined in terms of their "weight". That is, heavyweight methodologies require much

documentation and ceremony. Whereas, lightweight methodologies require little

documentation and ceremony outside of writing the code.

Microsoft Solutions Framework (MSF): A software development framework developed by

Microsoft for their consumer product development, as well as internal and external business

application development (see http://www.microsoft.com/msf). The MSF describes ways of

organizing teams, structuring projects, and other effective practices for software

development.

MSF Process Model: A subset of the Microsoft Solutions Framework that describes the life

cycle of an MSF project. It describes the five phases of a project (Envisioning, Planning,

Developing, Stabilizing, Deploying), as well as principles to be used in development.

MSF Team Model: A subset of the Microsoft Solutions Framework that describes best

practices in organizing teams for software development. It describes 6 roles that should be

filled and other principles and best practices of building teams.

Risk Mitigation: The process of risk assessment in software projects is the act of finding all

possible things that could go wrong with a project during its development and deployment.

The process of keeping these risks from occurring, or minimizing the impact of a risk that

does occur is risk mitigation.

Scope: What features are in the project (as opposed to those that are out of the project).

The scope defines the boundaries of the work that will be done on the project.

Software Development Life Cycle (SDLC): The phases a software development project will

go through from inception of the project to completion.

Stakeholders: Members of the University community (or sometimes outside the community)

that have a stake in the outcome of the project. Frequently stakeholders are senior staff

members who are responsible for large parts of the university. Additionally, stakeholders

might be those in departments who are affected by the work of the department the project is

serving.

Task: In this methodology handbook, we are using the term task to denote anything the

project team must do throughout the cycle of development that doesn't necessarily yield an

artifact or deliverable. Sometimes these tasks become an input to an artifact (e.g. developing

a Rough Draft of Schedule becomes an input to the Project Plan). Many times, it is

something that just creates value for the team that doesn't need documented (e.g. Peer

Reviews or User Department Observation)

User Department: The departments represented by the users of the system. The user

department is classicly labeled the "business side" (as opposed to the IT side)

User Interface: The part of the software system that the user interacts with. This could be a

web page, an RPG program, or a windows application. The distinction is made between this

user interface and the application logic that goes on "behind the scenes"

Next: Envisioning - Overview

Back: Iterative and Incremental Development

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:40 PM | Contact Us

 IT Development

Envisioning: Overview

The purpose of the Envisioning phase of a project is to allow the project team to determine

the initial goals, scope and structure of the project.

Tasks and Artifacts

Tasks Req'd Role Responsible

Team Formation Yes Project Management

Risk Assessment Yes Project Management

Security Analysis Yes Development

Preliminary Schedule Development

Rough Draft of Scope

Rough Draft of Schedule

Yes Project Management

User Department Observation Product Management

Measurements Development Project Management

Artifacts Req'd Role Responsible

Project Plan Yes Project Management

Questions to Answer

Have you identified team members for each role of the team?

Does the team include appropriate customer representation, with the needed

authority to make decisions about features, priorities, and resources?

Does the team have adequate Information Services representation that can

ensure a smooth implementation, training, and ongoing maintenance of the

product?

Have you identified the major features that will be included on this project?

Have you identified the major risks associated with this project, along with

mitigation strategies for those risks?

Have you developed a high-level schedule for all phases of the project?

Do the developers on the project have an adequate understanding of the

business domain?

Does the team have an understanding of the sensitivity of the data that will be

handled through the system?

Does the team know what measurements you are going to track throughout the

project?

Milestone

Project Scope and Vision Approved

The Envisioning phase is complete when the entire team and stakeholders have

come to an agreement regarding the scope and structure of the project.

<- prev : Table of Contents Planning - Overview : next ->

Envisioning - Tasks : next ->

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:36 PM | Contact Us

 IT Development

Envisioning: Tasks

Team Formation
Description

The team formation process is modeled after the Microsoft Solutions Framework (MSF)

Team Model. This model identifies 6 roles for each project.

The goal of this task is to identify at least one person to be the lead on each role.

Individuals may fulfill duties on more than one role. Also, there may be more than one

person fulfilling one role.

For reference, a short description of each role is listed below.

1. Product Management

Satisfied Customers: This role is primarily responsible for giving requirements to the

developers, prioritizing requirements within the project, and establishing the business

case.

2. Program (Project) Management

Delivery Within Project Contraints: This role is primarily responsible for making sure

the project meets the established goals of the team, making sure it is delivered on

time and within budget, allocation resources, facilitating communication, and driving

critical decisions.

3. Development

Delivery to Product Specifications: This role is primarily responsible for building the

product such that it meets the needs of the customer, being a technological consultant,

and creating and maintaining estimates.

4. Testing

Release After Addressing All Issues: This role is primarily responsible for making sure

all issues are known and addressed before release.

5. User Education

Enhanced User Performance: This role is primarily responsible for making sure the

users can be as productive as possible with the new (or revised) product, providing

input on usability, and training the users on the product before and after release. For

each project, a representative from DISC will fulfill this role.

6. Logistics Management

Smooth Deployment and Ongoing Management: This role is primarily responsible for

ensuring that the deployment goes as smoothly as possible and that the product is set

up for long-term maintenance.

Resources

MSF Team Model Detailed Description

Peopleware - DeMarco and Lister

Getting Your Team Off on the Right Foot

Risk Assessment

Description

Risk Assessment is the process of perceiving, analyzing and preparing for (or dealing

with) conditions or events which threaten the success of a project. The amount of effort

needed to assess risk is usually proportional to the size and scope of the project. Since

life changes as a project moves along, risk assessment must be done in all phases of

the project.

During the envisioning phase of a project, most of the risk assessment effort will be

directed towards predicting which conditions or events which are the most likely to

threaten the success of the project. As such, your goals in risk assessment are:

list as many potential dangers that can be reasonably foreseen

determine the probability of occurrence for each danger listed

determine the extent of potential loss for each danger listed

Once this is done, re-order the entire list from most dangerous to least dangerous. This

will help keep things in perspective as the project wears on. (Remember to re-order

the list again when re-assessing the dangers in later phases.)

5 Common Risks to Assess for the Project

Are the stakeholders actively involved in their role in the project?

Are new features requested after the requirements have been declared complete?

Do any features or products utilized violate the provided Information Security

Guidelines?

Do the requirements affect a change in other products not previously included in

this project?

Does inadequate testing contribute to a larger number of defects in the deployed

product?

Resources

Risk Management - Wikipedia

Conducting a Project Risk Assessment

Risk Assessment - 17 Steps to Success

Risk Management - Tasmanian State Government Guide

Project Management Framework - Risk Management

Reducing Project Management Risk

Project Health - Should We Keep Investing?

When is a Risk Not a Risk?

The NASA Guide to Effective Risk Management

Take a Risk (Gantthead.com article)

Security Analysis
Description

The Security Analysis for the project should be incorporated into the Risk Assessment

document. If security is not taken into consideration from the beginning of a project, it

will become more and more expensive to maintain an application’s security. We want to

distance ourselves from the "penetrate and patch" process to a new "cradle-to-grave"

mindset where security is taken into consideration in all phases of the SDM.

The developer should consider the nature of the data/application in deciding an

appropriate level of security.

Most security measures are based on the following concepts (also known as the CIA

model of security):

Confidentiality

Integrity

Availability

Security Levels

RED - where data would only be stored temporarily and after a task is completed, we

delete part of the data. (i.e. credit card information).

ORANGE - where data is sensitive, and belongs to a person, but some other authorized

people may have access as well. The data has importance outside the University as

well. (i.e. SSN, Address)

YELLOW - where data is sensitive, but it is sensitive only to the university. (i.e. Grades,

Financial Aid, etc). It is still only accessible by the owner or an authorized person.

GREEN - Data that identifies a person that could be displayed to the public. (i.e. Name)

BLUE - Stats info. (Public Data)

Some questions to consider during this phase are:

How sensitive is this project?

Have you picked the Security Level your project falls under?

What metrics will be used throughout the project to monitor security development?

Will it have public access? restricted access?

Are there legal issues involved with this application? (e.g. privacy)

Do you have enough resources in the team (including stakeholders) to analyze

security risks?

Rough Draft of Scope
Description

The purpose of preliminary schedule development in the Envisioning phase is to define

the broad milestones of the project.

In the MSF, a milestone is a synchronization point for the project. It represents a major

event in the life of a project, such as the first working release, requirements freeze,

project closure, etc. Milestones can also be defined using the transition from phase to

phase in the project.

A list of milestones for the project, and corresponding target dates for those milestones

should be present in the Vision and Structure document (see below)

Resources

MSF Process Model (description of milestones)

Rough Draft of Schedule
Description

The purpose of developing a rough draft of the scope is to identify the major features

and goals that the new or modified product is to provide and to accomplish. When a

project begins, each member of the team may have a different set of assumptions for

what the project is to accomplish. This allows the team to identify the major

differences in these assumptions.

At this level, we are most concerned about identifying the deliverables so that a project

schedule can be drafted. Deliverables refer to the products that will be delivered to the

customer, such as the features that will be developed, training manuals, etc.

Resources

Defining the Scope of a Project

User Department Observation
Description

The purpose of user department observation is to learn as mush as possible about the

business processes of the user. User observation assists in the development of the

problem definition, business needs, business processes, and user interface design.

Methods of User Department Observation

1. Observation - Take anywhere from a couple of hours to several days to observe

users going through the business process that is being programmed for the project.

2. Training - Participate in any training classes or new employee training that the

department uses. User manuals may also be a valuable tool for this task.

Resources

The I.T Inside the World’s Biggest Company

Measurement Development
Description

A metric is simply a measure of some property or component of a project which is

collected for the purpose of diagnosing a problem or evaluating the success of a

product. Many project teams initially will go overboard and attempt to measure

everything, hampering the pace of the project. Other teams, having been burned by

over-metrification, abandon metrics altogether and lose out on the benefits that a

precisely conceived metrics set could provide. The point is to measure only that which

will yield quality information.

In the envisioning phase, we are only concerned with deciding which metrics are

important and planning to collect data for those metrics. The exact method used for

collecting each metric does not need to be decided at this time. One of the easiest

ways to generate a set of metrics is to take each goal stated in the Vision and

Structure Document and attempt to re-state it in a quantifiable manner. For some

goals, this may mean conducting research into what the baseline measurement is. For

example, if the goal is "to reduce account balance processing time by 50%", then you

must know what the average account balance processing time (and generally the range

of one standard deviation in either direction) to determine if you have met the goal.

Most of all, start off with a set of metrics you can manage. As we get used to

determining, collecting, and analyzing the kind of metrics which matter to us, we can

let the data tell us where we are missing measures. We can add the new metric to the

set in the next version of project. It is better that we not have one or two measures

that we would have liked than that we collect too much useless data, get frustrated and

give up on metric collection altogether.

5 Common Measurements

Number of changes to requirements

Number of defects caught before deployment (after development is complete)

Number of defects caught after deployment

Average amount of reduced time for business processes

What are the average amounts of time that it takes to train a person to use this

product(s)?

Resources

TenStep - Managing Metrics

Wikipedia - Software Metrics

Software Metrics Primer

Process and Project Metrics

Software Productivity Center, Inc. - Metrics

Spin.org - Customer Success Metrics

CIO.com - The Metrics Trap

Designing Metrics

! prev : Envisioning - Overview Envisioning - Artifacts : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:37 PM | Contact Us

 IT Development

Envisioning: Artifacts

Project Plan
Description

The Project Plan combines the three main documents that must be completed for the

Envisioning Phase. These documents are: The Vision Document, the Project Structure

Document, and the Master Risk Assessment Document. The following is a description of

the components of The Project Plan.

The official version of this document should be signed by the project team and

stakeholders. The signed copy of the document should be provided to the IS

Administration Office for filing.

Vision

Vision - Documents the description of the project’s deliverable as the solution to the

stated need.

Need - Why is this project needed? What is the problem definition?

Goals and Objectives - What are the broad goals and objectives for the project?

Feasibility - Has this project been determined as feasible for the University to

complete?

Constraints/Assumptions - What are the project assumptions and constraints?

Scope Statement - What are the boundaries for the project? What is in and what is

out?

Schedule/Timeframe - What is the high level estimate for the timeframe of the project?

Performance Objectives -

1. Broad Design Considerations

2. Measurable Goals - What are the team’s measures of success for the project?

Structure

The Project Team

1. Team Organization - Who is the project team and what are their roles? See Team

Formation for a description of the team roles.

2. Staffing Management Plan - Documents the required human resources and their

approximate contribution time for the project.

Stakeholders - Who are the stakeholders?

Communication Plan -

1. Email List - Documents the memebers of the project team and the email distribution

list that was created for the project.

2. Meeting Schedule - Documents when the team will meet and who is required to

attend the meetings.

3. Reporting Plan - Documents the various reports and items that must be

communicated to keep the team and stakeholders thoroughly informed of the status of

the project.

Change Management Plan (optional) -

1. How will change requests be handled?

2. How will changes be tracked?

Quality Assurance Plan (optional) - The process to evaluate the project’s performance to

ensure that the project will perform within quality standards.

Master Risk Assessment

See the Risk Assessment Plan

Security Analysis

What is the security level for the project? How will security be monitored throughout

the project?

(See the Security Analysis task for more information)

Resources

DLP Contact System Vision and Structure Document

Guide to the Project Management Body of Knowledge

Complete Idiot’s Guide to Project Management

Low Intensity Project Management (Gantthead.com)

! prev : Envisioning - Tasks Planning - Overview : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:38 PM | Contact Us

 IT Development

Envisioning: Artifacts

Project Plan
Description

The Project Plan combines the three main documents that must be completed for the

Envisioning Phase. These documents are: The Vision Document, the Project Structure

Document, and the Master Risk Assessment Document. The following is a description of

the components of The Project Plan.

The official version of this document should be signed by the project team and

stakeholders. The signed copy of the document should be provided to the IS

Administration Office for filing.

Vision

Vision - Documents the description of the project’s deliverable as the solution to the

stated need.

Need - Why is this project needed? What is the problem definition?

Goals and Objectives - What are the broad goals and objectives for the project?

Feasibility - Has this project been determined as feasible for the University to

complete?

Constraints/Assumptions - What are the project assumptions and constraints?

Scope Statement - What are the boundaries for the project? What is in and what is

out?

Schedule/Timeframe - What is the high level estimate for the timeframe of the project?

Performance Objectives -

1. Broad Design Considerations

2. Measurable Goals - What are the team’s measures of success for the project?

Structure

The Project Team

1. Team Organization - Who is the project team and what are their roles? See Team

Formation for a description of the team roles.

2. Staffing Management Plan - Documents the required human resources and their

approximate contribution time for the project.

Stakeholders - Who are the stakeholders?

Communication Plan -

1. Email List - Documents the memebers of the project team and the email distribution

list that was created for the project.

2. Meeting Schedule - Documents when the team will meet and who is required to

attend the meetings.

3. Reporting Plan - Documents the various reports and items that must be

communicated to keep the team and stakeholders thoroughly informed of the status of

the project.

Change Management Plan (optional) -

1. How will change requests be handled?

2. How will changes be tracked?

Quality Assurance Plan (optional) - The process to evaluate the project’s performance to

ensure that the project will perform within quality standards.

Master Risk Assessment

See the Risk Assessment Plan

Security Analysis

What is the security level for the project? How will security be monitored throughout

the project?

(See the Security Analysis task for more information)

Resources

DLP Contact System Vision and Structure Document

Guide to the Project Management Body of Knowledge

Complete Idiot’s Guide to Project Management

Low Intensity Project Management (Gantthead.com)

! prev : Envisioning - Tasks Planning - Overview : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:38 PM | Contact Us

 IT Development

Planning: Overview

The planning phase is when the bulk of the planning for the project is completed. During this

phase, the team prepares the requirements, works through the design process, and prepares

work plans, cost estimates, and schedules for the various deliverables.

Tasks and Artifacts

Tasks Req'd Role Responsible

Requirements Gathering Yes Project Management

Schedule Development Yes Product Management

Risk Reassessment Yes Project Management

Peer Reviews Yes Development

Measurements Collection
Project Management

Development

Artifacts Req'd Role Responsible

Use Cases Yes Product Management

Design Documents

User-Interface

Business-Logic

Database

Yes Development

Updated Project Plan Yes Project Management

Security Checklist Yes Development

Questions to Answer
Did the requirements gathering provide enough information to design the system?

Does the project team have a rough idea of how long this iteration will take?

Do the risks identified in Envisioning still apply or have new risks surfaced?

Is the project team doing what they said they would do to keep the risks identified in

Envisioning from occurring?

Have the designs been reviewed and evaluated by someone outside the project team?

Is the project team collecting the data they said they would in Envisioning?

Does the team have a shared understanding of the business problems the system is

designed to solve?

Can the peer reviewers understand the intended design of the system through the

design documents?

Does the project plan accurately reflect changes made to requirements, schedule,

resources, and risks?

Has the developer constructed a security checklist appropriate for the environment and

requirements of the project?

Milestone
Project Plans Approved

At the project plans approved milestone, the project team and key project stakeholders

agree that the due dates are realistic, that project roles and responsibilities are well

defined, and that mechanisms are in place for addressing areas of project risk. The

functional specifications, master project plan, and master project schedule provide the

basis for making future trade-off decisions.

! prev : Envisioning - Overview Developing - Overview : next "

Planning - Tasks : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:33 PM | Contact Us

 IT Development

Planning: Tasks

Requirements Gathering
Description

A requirement is a necessary attribute in a system, a statement that identifies a

capability, characteristic, or quality of a system. The difficult part of requirements

gathering is not documenting requirements; it is the effort of helping the customer

figure out exactly what they need. A requirement specifies what will be provided, not

how a requirement will be provided. The question of how is part of the design.

(Source: Recommened Requirements Gathering Practices -Dr. Ralph R. Young)

There are three levels of requirements:

. 1 Business requirements: high-level needs that, when addressed will increase the

value of the business.

. 2 User requirements: Bridge the requirements of the business and the requirements

of the software.

. 3 Software Requirements: The doing parts are the functions that derive directly from

your user requirements. The being parts are non-functional needs that must be

addressed.

There are numerous requirements gathering techniques that can be adapted for the

project. A few are listed below:

Interview/Discussion: The most common way to gather requirements is through

interviews and discussions. It is an effective way to formally or informally research

what the necessary requirements are for the project.

Requirements Workshops: A structured way to capture requirements from which

commitment, teamwork and consensus is often found. (See Requirements by

Collaboration: Workshops for Defining Needs - Ellen Gottesdiener for more

information on workshops)

Prototyping: See Design Documents: User interface for more information on

prototyping

Use Cases: See the Use Cases section below for more information on Use Cases

Storyboards: A storyboard is a set of drawings depicting a set of user activities

that occur in an existing or envisioned system or capability.

Resources

Requirements by Collaboration

Recommended Requirements Gathering Practices

Schedule Development
Steps to Building a Project Schedule:

1. Develop a task list

- Developing a task list involves dividing the project into smaller, more manageable

components and then specifying the order of completion. It answers what tasks need to

be done to accomplish the projects objectives. The task list should not only include task

development time, but other project management tasks such as training, testing, and

implementation.

2. Estimate Task Duration

- 5 options for estimating task duration:

. 1 Ask the people who will be doing the work

. 1 Get an objective expert's opinion

. 2 Find a similar task in a completed project plan

. 3 Perform a test session of the task if time permits

. 2 Make your best educated guess

3. Document the Project Schedule

- There are numerous ways to document the project schedule. Some examples are MS

Word, MS Excel, MS Project, Sticky Notes, etc.

Resources

Schedule Checklist - Gantthead.com

Risk Reassessment
Throughout the life of the project continual risk reassessment must be practiced in

order to make certain that the success of the project is not threatened. During Risk

Reassessment the results of the Risk Assessment task during the Envisioning Phase

should be revisited. There are a few areas that must be addressed for Risk

Reassessment:

Do the risks identified during the Envisioning Phase still apply?

Have any additional risks been discovered during the Planning Phase?

Is the probability of occurrence for each risk still accurate?

Are appropriate measures being taken to make sure that the risks do not occur?

Are any risks that have occurred being properly handled as documented in the

Project Plan?

Peer Reviews
Description

Peer Reviews provide a resource for teams to identify potential design and

implementation flaws, and increase the probability of success. Applying this process

early in the life cycle allows for maximum advantage in terms of resource efficiency as

well as design confirmation and ultimate mission success.

Issues that should be addressed by the Peer Reviews in Planning:

Requirements

Security

Design

Peer reviews will be performed throughout the lifecycle of the project. In Planning, the

developer should identify someone in the department (outside the project team) that

will be the reviewer for this particular project. This will enable someone to see the

designs as they evolve and also review the code as it is written.

The developer and reviewer should work out the details of how they want to perform

their reviews on a project by project basis.

Resources

An Abridged Guide to Reviewing Code

Part of Your Complete Breakfast: Code Reviews

Measurements Collection
For Measurements Collection in Planning, you should refer to the measurements defined

in Envisioning. Basically, whatever measurements you said you would track in

Envisioning, you need to collect (where appropriate) in Planning.

! prev : Planning - Overview Planning - Artifacts : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:34 PM | Contact Us

 IT Development

Planning: Artifacts

Use and Misuse Cases
Description

Use cases are a method of gathering and analyzing requirements. In essence, they are

stories of using the system. Most often use cases are textual descriptions of some actor

(some user) performing some action in the system. The use case then describes the

steps by which the user and the system will interact. Also, the use case can document

what will happen in certain exception conditions.

Misuse cases on the other hand are concerned with security requirements. Use cases

typically concentrate on what the system should do, while misuse cases describe what

the system should not do. Stakeholders do not normally think about what the system

should not do, rather they are more concerned with what the system should look like

and what it will do. A misuse case is a sequence of actions that will result in a loss to

the organization. In order for us to be able to properly assess the security risks wihin

our projects we must take time to also look into misuse cases when we are completing

the Planning Artifact of Use Cases.

See the link below for example use cases. The body of knowledge for use cases is too

broad for a full treatment in this handbook. See the other resources below and the

books listed below for more information.

This handbook espouses the following principles in writing use cases:

. 1 Use cases should not include any information about the user interface. UI

information only bogs down the use case and makes it more unmanageable. UI

requirements should be documented in the User Interface Design document

(below).

. 2 Use cases should focus on the user's actions, not the system's actions. Although

this information is sometimes necessary to include, the use cases should not get

bogged down in low-level system details. Use cases are for customers to express

how they think the system should behave when they interact with it.

. 3 We will err on the side of informality rather than formality and simplicity rather

than complexity. A simple list of steps for the use case and any alternate flows will

be sufficient. The "fully dressed" format espoused by some is not necessary to

provide value and only muddies the waters when getting user feedback on the use

cases.

. 4 Use case diagrams are not necessary. These diagrams create little value and are

just one more place to record changes in requirements.

Resources

Use Cases: Robert C. Martin

Use Cases, Ten Years Later: Alistair Cockburn

Use and Abuse Cases: Martin Fowler

Writing Effective Use Cases: Alistair Cockburn

How to Avoid Use Case Pitfalls

Use Cases of Mass Destruction

Use Case Examples

Templates for Misuse Case Description

Design Documents: User Interface
Description

Non-Function User Interface Prototyping is a method of usability testing that is useful

for Web sites, Web applications, and conventional software. In a nutshell, you make

screen shots, diagrams, hand written drafts of web screens, menus, image placement,

forms, pop-up windows, etc of the project you are trying to build.

Non-Function User Interface should help the Project Manager and the Programmer

answer some of the following questions:

Concepts and terminology: Do the target users understand the terms you've chosen?

Are there key concepts they gloss over or misconstrue?

Navigation/workflow: If there's a process or sequence of steps, does it match what

users expect? Do they have to keep flipping back and forth between screens? Does the

interface ask for inputs that users don't have, or don't want to enter?

Content: Does the interface provide the right information for users to make decisions?

Does it have extra information that they don't need, or that annoys them?

Page layout: Although your scribbled screens may not be pretty, you'll still get a sense

of whether users can find the information they need. Do you have the fields in the

order that users expect? Is the amount of information overwhelming, not enough, or

about right?

Functionality: You may discover missing functionality that users need, or functionality

you'd planned but users don't care about.

Source: Paper Prototyping - Morgan Kaufmann

Resources

Paper Prototyping - Carolyn Snyder

IBM - Paper Prototyping

Paper Protyping: Getting User Data Before You Code

Design Documents: Business-Logic
Description

The Business Logic layer is the layer of code that sits between the Database layer

(where information is actually stored) and the User-Interface layer (where information

is presented to the user of the software in a way that he or she understands). The

purpose of the Business Logic layer is, in a sense, purely transformative. That is, its

sole reason for existing is to take the information stored in the database and to alter it

into a format which the User-Interface layer can present to the product user.

The entire trouble with the Business Logic layer is that it is not usually implemented

entirely separate of either of the other two layers. More often, it is either included in

the user-interface (e.g. a Cold Fusion script or an RPG program which displayed

"Freshmen" when given the value 1 from the database, "Sophomore" when 2, "Junior"

when 3, etc.) or it is included in the database (e.g. through the use of table joins,

views, or stored procedures). This means that the temptation arises for the analyst to

say "oh, well, look THAT is just part of the user-interface/database". However, for

documentation puposes, this temptation must be resisted because later programmers

(or, indeed, you yourself) may need to alter the layer in which the business logic was

placed (e.g. a stored procedure must be created to do the transformations because the

script/program doing them now processes too slowly).

One simple way to track how the data is transformed is to create a spreadsheet that

details what database values resolve to what user-interface values (and, of course, vice

versa). In the case where shortcuts are used (e.g. joining in a table of country names

and abbreviations), documenting the way that table should be joined in is sufficient.

Another method is simply to describe in a text document what transformations will be

done.

For more complex projects, the above suggestions may not work. If this is the case,

the use of Data Flow Diagrams, flow charts, UML Sequence Diagrams or even some

other method may be neccesary. For these techniques, using drafting/drawing or some

sort of presentation software (e.g. VISIO or PowerPoint) is preferable and generally

easier.

Resources

The Data Flow Diagram Quick Reference

How to Draw Data Flow Diagrams

A Fresh Look at Flow Charting

Flow Chart and Decision Process

UML 2 Sequence Diagram Overview

Modeling with UML

Design Documents: Database
Description

One of the most important features of database documentation is how the various

tables relate to one another.

The easiest way to document these relationships, if you are creating the database using

SQL Server, is to create all of your tables and relationships using the Diagrams tool in

Enterprise Manager. This tool will document your database in a visual manner intuitive

enough for other developers.

If you are creating the database on the AS/400, you have less luck since there is no

native tool to document the relationships involved. However, since you are stuck doing

your own documentation, it is recommended that you use a visual tool such as VISIO

or PowerPoint to document the tables and their relationships.

Resources

Data Modeling

Database Normalization for the Average Jane/Joe

Wikipedia - Database Normalization

Database Normalization and Design Techniques

UT Austin - Database Management Principles

Updated Project Plan
The Project Plan is a living document and must be updated as changes are made to the

various areas of the project. The use of iterative and incremental development justifies

updating the project plan. Iterative and incremental development allows for some

changing of requirements and goals as the project goes through different iterations and

phases. There are numerous areas in the Project Plan that could change throughout the

life of the project. For example, the scope could be modified, a team member may be

replaced, or the projects deliverables may change.

The preferred method for updating the Project Plan is to create a revision of the

existing document. Previous versions of the Project Plan should be saved so that they

can be referred to in the future if historical information is needed.

Security Checklist
Description

During the planning process, security planning is focused on identifying security risks

for the application being developed.

The developer should construct a checklist that identifies all possible security risks that

should be accounted for in the development process. This checklist will serve as a basic

security requirements document. The items on the checklist will come from known

vulnerabilities for the platforms on which the application is being developed, as well as

special considerations based on the type of data manipulated by the application.

Vulnerabilities

For web applications, see the OWASP Top Ten Web Application Vulnerabilities (linked

below) as a start.

For AS/400 applications, see the AS/400 Top Ten (or so) Vulnerabilities (linked below)

that was developed in-house as a start.

For systems implementations, see the SANS Top 20 vulnerabilities (linked below) as a

start for the specific target platform.

Data

Based on the security planning done in the Envisioning phase, you should be

documenting the types of data that will be handled in the application. For instance, you

might identify that you will be manipulating biographical information, credit card

payments, usernames and passwords, etc. You should identify how (in general) each

type of data will be stored. That is, you will specify that biographical information will be

available only to an authorized user, credit card information will be destroyed after use,

and usernames and passwords will be stored (encrypted) in a database file.

Resources

Developing a security checklist

OWASP Guide to Building Secure Web Applications

OWASP Top Ten Web Application Vulnerabilities

SANS Top 20 Vulnerabilities

! prev : Planning - Tasks Developing - Overview : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:35 PM | Contact Us

 IT Development

Developing: Overview

During the developing phase, the team accomplishes most of the building of the system.

However, some development work may continue into Stabilizing in response to testing. The

developing phase involves more than code development and software developers. All roles

are active in building and testing deliverables.

Tasks and Artifacts

Tasks Req'd Role Responsible

Risk Reassessment Yes Project Management

Security Implementation Yes Development

Peer Review Yes Development

Unit Testing Yes Development

Test Planning Yes Testing

Usability Testing User Education

Schedule Tracking Yes Project Management

Measurements Collection Product Management

Coding Style Yes Development

Reusability Planning Development

Artifacts Req'd Role Responsible

Updated Project Plan Yes Project Management

Source Code Yes Development

Test Plan Yes Testing

API for Reusable Components Development

Questions to Answer
Has the entire scope of this iteration been developed?

Do the risks identified in Envisioning and Planning still apply or have new risks

surfaced?

Is the project team doing what they said they would do to keep the risks identified in

Envisioning and Planning from occurring?

Has the developer followed the security checklist constructed in Planning?

Is the peer reviewer satisfied that the quality and readability of the source code

complies with this document?

Has the developer certified that the system is ready for integration testing?

Has the testing lead documented all test cases for the system?

Is the user interface intuitive and easy to use?

Has the project manager appropriately documented any changes to the estimated

schedule?

Is the project team collecting the data they said they would in Envisioning?

Has the developer identified, implemented, and documented any potentially reusable

components in the system being developed?

Does the project plan accurately reflect changes made to requirements, schedule,

resources, and risks?

Milestone
Scope Complete Milestone

At the Scope Complete Milestone, all features are complete and the system is ready for

external testing and stabilization. This milestone is the opportunity for customers and

users, operations and support personnel, and key project stakeholders to evaluate the

solution and identify any remaining issues that must be addressed before the system is

released.

! prev : Planning - Overview Stabilizing - Overview : next "

Developing - Tasks : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:31 PM | Contact Us

 IT Development

Developing: Tasks

Risk Reassessment

During the Developing Phase, Risk Reassessment must once again be completed

to make certain the success of the project. Since our projects have the possibility

of continually changing it is imperative that risks be assessed throughout the life

of the project. As with the Planning Phase, the following questions should be

answered when completing the Risk Reassessment task during the Developing

Phase.

Do the risks identified still apply to the project?

Have any additional risks been discovered during the Developing Phase?

Is the probability of occurrence for each risk still accurate?

Are appropriate measures being taken to guarantee that the risks do not

occur?

Are any risks that have occurred being properly handled as documented in

the Project Plan?

Security Implementation

During this phase, the developer should be coding the product in a secure way.

That is a very broad goal that is not always practically feasible. To obtain the

most feasible level of security, the developer should be following the security

checklist developed in Planning.

The only way to ensure that the security checklist is being implemented is to

make the checklist an item to be reviewed by the peer reviewer identified in

Planning. This also helps in the overall education of the department in developing

secure software.

For more information, see the resources listed in Planning.

Peer Reviews

Description

A peer review (sometimes called a code inspection or a walkthrough) is simply a

review of the source code by developers who are not a part of the project

development team. The primary purpose of the peer review is to make sure that

the code is readable and commented such that code should be easily

maintainable and modifiable by others when the members of the development

team go on to other projects.

In this task it is more important that the comments and code agree with each

other than that either agree with the design documentation. Gaining assurance

that the source code is in agreement with the design documentation is the

primary task of the test planning task.

However, there may be some desire to establish pre-testing assurances of

compliance to the design, making this a secondary purpose of the peer review.

Even if this is the case, it is best that the first time reviewers see the code, they

see it without having previously seen the design. This will allow the reviewers to

focus on what the code actually does and what the comments actually say, rather

than on what they should do and say.

Other benefits of peer review include cross-training in a language or tool which

may be unfamiliar and promoting code reusability. When a reviewer seens a piece

of code that would serve the entire team better by being broken out on its own

and more generalized, this is promoting code reusability.

Resources

Code Review Checklist

SATC - Software Inspections

MFeSD - Peer Reviews

Macadamian - Single Committer Software Development

Addison Westey - A Little Help from Your Friends

Peer Reviews

The Peer Review Process

Unit Testing

Description

The objective of Unit Testing in Developing is to ensure that each component of

the system works in isolation from other components. Naturally, during the

development of the product, the developer will be testing the interaction between

various system components. However, unit testing is only concerned with

inidividual components.

A key method in unit testing is to test your code very quickly after it is written.

Identify the conditions under which it succeeds and ruthlessly test. There should

be a quick code-test cycle when in Developing.

Unit testing does not need to be a heavyweight, documentation centric activity. It

is primarily for the developer's benefit and to ensure that integration testing in

Stabilizing can actually occur. Another perspective on unit testing is to write your

tests before you write your code. This is known as "Test Driven Development"

Resources

Proactive Testing

testdriven.com

Unit Testing Databases

Unit Testing Cold Fusion Code

Test Planning

Description

Test planning occurs after Unit Testing and before Usability Testing. This task

exists to create a roadmap to test the entire product (and the interaction

between products, when appropriate) to make sure that it complies with the

expectations agreed to from the Requirements Gathering task of the Planning

Phase. The Test plan should be built in collaboration between the Test and

Verification Team and the developer(s).

See Test Plan Artifacts for more details.

Usability Testing

Description

Usability testing is a semi-structured way to get feedback on your design from

actual users, not other developers. It is semi-structured because it is more than

just focused groups (you aren't just asking people what they "think" about a

design) but it is not so rigid as a scientific experiment.

Generally, you should get 5-6 people together for each major part of the system.

For instance, if you have a public interface and an administrative interface, you

should probably test them separately. Then, you will come up with a test plan for

them, giving them just enough instructions so they know what to do, but not too

many instructions so they are left to experience the product as the average user

would. It is best to be present with the user as they are testing the system and

to have more than one person observing and recording notes about where the

user trips up and where the design succeeds.

Usability testing should be done in an iterative way, not waiting until the product

is completely done to start usability testing. Usually, the testing will uncover

more than just cosmetic changes, but changes that sometimes require a major

shift in architecture to support the users better. This allows for rapid feedback on

design and the ability to fix major user interface design flaws before they become

irreversible.

Resources

UseIt.com - Jakob Nielson's website

Why you only need to test with 5 users

Usable Web - Portal for usability resources

Web Style Guide

Measurements Collection

During the Developing Phase the tracking of measurements continues as it did in

the Planning Phase. Measurements for the project are decided upon during the

Envisioning Phase and must be tracked throughout the life of the project.

Schedule Tracking

Once the Project Schedule is completed in the Planning Phase it is now imperative

that the Project Manager properly track the progress made based upon the

schedule. The Project Schedule should be broken into specific tasks and have a

task duration associated with the various tasks. The Project Manager should be

involved with the progress that the Developer makes on the schedule. This would

include everything from planning the tasks that should be done for a day or

week, following up on the task, and finally confirming that a task has been

completed. This process should not be one where the Project Manager hands the

developer a task list and waits for it to be completed. Schedule tracking is an

interactive process. The following is a suggested method for managing the

schedule.

. 1 Meet with the developer to discuss the forecasted tasks for the day or

week (whichever timeframe that you feel necessary). Find out if there are

any areas that you, the Project Manager can help the developer out with.

. 2 Check up on the developer mid-way through the task(s) time frame and

find out if everything is on track and if the developer needs any help.

. 3 Confirm that the task(s) have been completed and properly document the

finished task.

. 4 Make any adjustments that are necessary to the task list.

Ultimately it is up to the Project Manager to decide with the Developer how

communication will be handled for the tracking of the schedule.

Schedule Tracking is very beneficial to the project because it allows for Project

status to be properly reported, it forecasts any anticipated changes in the

schedule more appropriately and it allows for the customer to have a more

accurate understanding of the status of the project.

Coding Style and Recommendations

Description

Source Code Comments

1. Every file that contains source code must be documented with an introductory

comment that provides information on the file name and its contents.

2. All files must include copyright information.

3. All comments are to be written in English.

4. Write some descriptive comments before every code major section.

5. During Peer Review, if a developer who is familiar with the language in

question does not understand your code, it means your code needs

documentation.

Naming Conventions (Files, Fields and Variables):

This section will be implemented in the next iteration of the SDM.

Language-Specific Recommendations:

Fusebox-based File Structure:

The logic uses a “star” application flow where all branching starts in and returns

to the index.cfm. This is usually accomplished by passing an action to the

index.cfm which includes the correct act or dsp file.

File Name Prefixes:

act – action template that executes some business logic on the server side. For

example, add contact to a database.

dsp – display templates, mostly html.

qry – queries, stored procedure calls that populates the display templates.

Reusability Planning

Description

Reusability helps software development in maintainability, modularity, portability,

productivity, interoperability, reconfigurability, commonality, adaptability,

reliability and quality.

One of the best ways to plan reusability is to think of programming as a

collection of components. A component is defined as "a nontrivial, nearly

independent, and replaceable part of a system that fulfills a specific function

within a system's architecture."

For components to be reusable they need to be clearly specified, portable and

adaptable. To make a component truly reusable, it has to be designed in a way

so as to allow adaptation. Adaptability is necessary because the developers of a

component cannot predict the requirements for all the systems and scenarios in

which it will be reused.

Repositories of such components need to be made available and easily accessible

to developers.

! prev : Developing - Overview Developing - Artifacts : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:32 PM | Contact Us

 IT Development

Developing: Artifacts

Updated Project Plan

The Project Plan that was created in the Envisioning Phase and updated in the

Planning Phase must once again be reexamined in the Developing Phase. One of

the major areas that will continually need to be addressed is the Risk Assessment

Plan that is document in the Project Plan. Risk Assessment is a task that must be

completed throughout the life of the project and as changes are made they

should be properly documented in an updated version of the Project Plan. Some

other areas of the document that may be updated are the Project Team and the

Security Information.

The preferred method for updating the Project Plan is to create a revision of the

existing document. Previous versions of the Project Plan should be saved so that

they can be referred to in the future if historical information is needed.

Source Code

Description

All source code (including SQL scripts, views, stored procedures, and CL scripts)

should be backed up in one of the code managment systems (Source Safe or

MKS Implementer).

All source code should be peer reviewed and tested before deployment.

For further guidance, see the Coding Style and Recommendations section of the

Devloping: Tasks page.

Resources

Wikipedia - Source Code

Test Plan

Description

The Test Plan is the set of documentation that results from the Test Planning

task. It will contain testing scenarios which are used to identify discrepancies in

the product. These scenarios should be reproducible by the developers and other

testers. Where appropriate, the identified measurements should be used as the

benchmarks for testing the product. Any problems encountered during testing

should also be documented.

The general rule is, when in doubt, let nothing be assumed for someone trying to

reproduce the discrepancy. So, document the tools you used, the computing

environment you tested in, and anything else which might be useful to anyone

intending to reproduce the problem.

Resources

Test Plan Template (Revision 1.1 - 05/04/2005)

API Documentation

Application programming interface (API) is a set of definitions of the ways in

which one piece of computer software communicates with another. It is a method

of achieving abstraction.

One of the primary purposes of an API is to provide a set of commonly-used

functions—for example, to draw windows or icons on the screen. Programmers

can then take advantage of the API by making use of its functionality, saving

them the task of programming everything from scratch. (See Reusability

Planning)

Everytime a developer writes a reusable component, there must be a API

document that would allow other developers to reuse that component.

What should be documented on the API?

1. Description of what the component does

2. Usage notes (exceptions, flags, etc)

3. List of attributes, parameters, return values (if they are required or not, and

default values)

4. Example of code usage

! prev : Developing - Tasks Stabilizing - Overview : next "

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:32 PM | Contact Us

 IT Development

Stabilizing: Overview

The stabilizing phase conducts testing on a system whose features are complete. Testing

during this phase emphasizes usage and operation under realistic environmental conditions.

The team focuses on resolving and triaging (prioritizing) bugs and preparing the solution for

release.

Tasks and Artifacts

Tasks Req'd Role Responsible

Establish target deployment date Yes Project Management

Deployment Planning Yes Testing

Training User Education

User Acceptance Yes Project Management

Security Testing Yes Testing

Stakeholder Communication Yes Project Management

Risk Reassessment Yes Project Management

Schedule Tracking Yes Project Management

Measurements Collection Yes Project Management

Artifacts Req'd Role Responsible

Deployment Sign-off Document Yes Project Management

Deployment Planning Document Yes Testing

System Admin Handoff Document Logistics Management

Questions to Answer

Do the risks identified in Envisioning, Planning, and Developing still apply or have new

risks surfaced?

Is the project team doing what they said they would do to keep the risks identified in

Envisioning, Planning, and Stabilizing from occurring?

Are all team members (as well as outside IS resources) aware of and ready for the

deployment?

Have the customers and stakeholders accepted the product as developed?

Have the end users been trained on the new system (or the new features of an

existing system)?

Has the project team communicated with all stakeholders according to the

communication plan generated in Envisioning?

Has the testing team verified that the system is ready for deployment?

Does the NOC have enough information about the system to be able to respond to

crises and support the system in production?

Does the project team have a repeatable and testable way to deploy the system into

staging and production?

Is the project team collecting the data they said they would in Envisioning?

Milestone

Release Readiness Milestone

The release readiness milestone occurs at the point when the team has addressed all

outstanding issues and has released the solution or placed it in service. At the release

milestone, responsibility for ongoing management and support of the solution officially

transfers from the project team to the operations and support teams.

<< prev : Developing - Overview Deploying - Overview : next >>

Stabilizing - Tasks : next >>

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:25 PM | Contact Us

 IT Development

Stabilizing: Tasks

Establish Target Deployment Date
The project target deployment date should have been established in the planning stage

of the project. At this point, a more accurate deployment date should be settled upon.

This date should be coordinated with the following parties.

The Verification and Testing Unit

The NOC

The developer

The Director of IT Operations (if downtime is required)

The customer

Additional time of two weeks minimum, should be built into the schedule to allow the

Verification and Testing Team to examine the product for any defects or errors. This

team should be made aware of the deployment schedule as determined in the planning

stage. The size of the project will determine the length of time required by the

Verification and Testing Team to complete testing.

If any down time is necessary, this downtime must be approved by Aaron Mathes, Chief

Operations Officer for Information Services. Downtime notices should be placed on the

University website 5-7 days before the downtime.

Deployment Planning
Verification and Testing Unit should work together with Developer, Project Manager and

System Developers to create the Deployment Plan Document. Not all plans will require

the envolvement of all parties, it will mostly depend on the size of the project and its

importance. Minor projects will be incorporated into the regular "defect" deployment

that happens twice a week (see Web Patch Deployment Procedures on

molly/4200/Verification and Testing/Deployment Procedure.doc), and may not need a Deployment Plan

Document.

Training
After the system has been deployed in the staging environment, training should occur

for all end users. This includes administrative offices, as well as students. Preferably,

the training should be carried out through the trainers in DISC so they can add the

new product or features to their portfolio of training. There might be instances,

however, where the training will be carried out by the user departments. The project

manager should work with the DISC trainers and the user department to determine the

best course of action.

Security Testing
Description

The testing team should utilize the security checklist generated in Planning and test the

application based on that checklist. Also, they should use any tools available to test the

general security of the product. Any vulnerabilities identified should be identified and

cataloged as a defect. The developer should then resolve the defect before deployment.

Resources

OWASP Testing Project

Common Criteria for IT Security Evaluation (from NIST)

Risk Reassessment
During Stabilizing, Risk Reassessment must once again be completed to make certain

the success of the project. Since our projects have the possibility of continually

changing it is imperative that risks be assessed throughout the life of the project. As

with the Planning Phase, the following questions should be answered when completing

the Risk Reassessment task during the Stabilizing Phase.

Do the risks identified still apply to the project?

Have any additional risks been discovered during the Stabilizing Phase (especially

risks related to deployment)?

Is the probability of occurrence for each risk still accurate?

Are appropriate measures being taken to guarantee that the risks do not occur?

Are any risks that have occurred being properly handled as documented in the

Project Plan?

Schedule Tracking
Now that the project is in Stabilizing, the completion date for the project should be

more certain. At this point, a review should be done of the schedule as described at the

beginning of Developing. If the project is running later than anticipated, this should be

communicated to the project team and all stakeholders.

Measurements Collection
During Stabilizing the tracking of measurements continues as it did in Planning and

Developing. Measurements for the project are decided upon during the Envisioning

Phase and must be tracked throughout the life of the project.

Most notably, the project team should be tracking the number of defects found during

testing.

Stakeholder Communication
An important task within every project is stakeholder communication. Every project has

a number of stakeholders that will be affected by the release of the product. It is

important that all stakeholders affected by the project are communicated to when a

product is deployed. This communication can take place through email, phone

conversations, or face-to-face meetings; whichever is more appropriate.

The project plan developed in Planning should have included a stakeholder

communication plan. In this phase, it is important to make sure all communication was

carried out as planned.

User Acceptance
Throughout the Stabilizing Phase it is important that the main end user(s) is involved

in the decision for the deployment of the product. The user should give his or her

approval of the new features and changes to the product to confirm that the new

development is satisfactory for the end user to complete his job or function. This

communication to the end user can be done through group demos, one-on-one

walkthroughs, and even the training that is completed during the Stabilizing Phase.

< - prev : Stabilizing - Overview Stabilizing - Artifacts : next ->

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 7/22/05 4:47 PM | Contact Us

 IT Development

Stabilizing: Artifacts

Deployment Sign-off Document

The deployment sign-off document is the agreement by the members of the team

that they are ready for the deployment of the developed product. This document

indicates the deployment date, what will be deployed, and includes signatures

from the following individuals:

Project Manager indicates that all team members have done what they need

to do to deploy the product

Product Owner indicates that they authorize changes to their system

NOC Director indicates that they are ready to deploy the system

IT Operations director indicates that campus stakeholders have approved

downtime (if necessary) and that he/she approves the system to be

deployed

Verification and Testing Lead indicates that the product has been tested and

ready to be deployed

Example Document

Commencement Photo Deployment Approval

Deployment Planning Document

Deployment will happen in two major stages:

Stage 1:

Development Envirnoment -> Testing Envirnoment

The Testing & Verification Unit will run tests on the deployed resources in the

Testing Envirnoment and communicate recommendations to the developers of

what may need to be changed for a successful deployment into production.

Once the changes are made (if any) the process of deploying to the Testing

Envirnoment will be repeated where the Testing & Verification Until will run the

tests again, once the deployment to the Testing Envirnoment is successful, Stage

2 can begin.

Stage 2:

Development Envirnoment -> Production Envirnoment

Once Stage 1 sucessfully completed, and the assumption that Testing

Envirnoment is mirrored from the Producation Envirnoment that means

(theoratically) the patches created for Stage 1 should work on Stage 2. The

Testing & Verification Unit should be able to run the same tests they ran on

Stage 1 and get the same results. If the results cannot be duplicated that

probably means that both Production and Testing Envirnoment are out of

synchronization and the issue should be taken care of appropiratelly.

Personnel Requirements

Organize your deployment team and then assign specific roles to team members.

If the necessary resources cannot be offered for deployment it will be safer to

delay the deployment until the resources are made available.

Organizing Your Deployment Teams

Usually team members will include:

* Developer in charge of Application System

* At least one System Administrator that will be available to carry the

deployment

* At least one Tester to verify and test the Application System after it has been

deployed.

Current Computing Environment

Everyone in the team should receive a short briefing from System Administrators

of what the current server and network environments looks like and what risk the

deployment in questions may pertain to the environment.

Application Requirements

The bits and pieces and configuration files that need to be deployed. A list of all

files, SQL scripts, Application Server configuration, server permissions, web

applications configurations should be listed.

Establishing Standards and Guidelines

The ultimate goal of creating a Deployment Planning Document is to automate

any future deployment for a given Application. As Deployment Planning

Documents and procedures and logic are generate for deployment they should be

done following Department standards and guidelines so they can be duplicated

with little effort as possible.

Deployment Design

Currently Programming Services have a patch deployment design based on the

deployment of patch and release files to a network share. These files are

deployed to the Staging Server, tested, and once correctly working, the

deployment takes place from this network share into the production server.

Risk Assessment

Depending on the Current Computing Environment briefing, the Testing &

Verification team will have to evaluate the risks with the System and Network

Administrators, who have the ultimate power of veto on a deployment.

Problem Escalation Plan

The escalation plan should be the set of tasks necessary to revert the deployment

in case something unexpeceted happens. The original version of the Application

being deployed should always be available for a "rollback" in case the Deployment

is not successful.

Communications Strategy

The communication strategy should be a simple common understanding of all

parties involved in deployment on where, when and how they can be contacted

during the deployment tasks.

Testing & Verification Plan

See Testing & Verification Unit Documents.

System Admin Handoff Document

To facilitate the handoff of new server systems from Development to Operations,

a handoff document should be created. This should be created for all new or

reconfigured servers. If the project is simply adding new functionality to an

existing application that has already been deployed, or adding a new application

to an existing web server, this is not necessary. The document should contain

the following sections:

General Configuration

This includes things like the OS, IP configuration, applications installed, service

accounts and permissions, machine name, DNS entries, where it is racked, what

systems it interfaces with, etc.

Testing Plan

This should be a copy of the testing plan that was used during Stabilizing. The

point here is that if a NOC employee has to do maintenance to the server, they

can run through the testing plan to make sure it is still functioning correctly.

Without this information, it is very difficult for them to know if the machine is

truly "up" or not.

Security Benchmarks

This section should include the initial security configuration of the machine. If

the CIS benchmark scoring tool could be used, this should also include the initial

score.

Response Plan

This section should identify any possible problems the systems developer has

encountered or thinks the NOC might encounter during maintenance of the

machine and how to go about responding to the issue. This basically serves as

the NOC's playbook that they can add to or modify as things change in

production.

Example Document

Arial Campaign Enterprise Handoff

<< prev : Stabilizing - Tasks Deploying - Overview : next >>

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 8/3/05 1:55 PM | Contact Us

 IT Development

Deploying: Overview

During this phase, the team deploys the core technology and site components, stabilizes the

deployment, transitions the project to operations and support, and obtains final customer

approval of the project. After the deployment, the team formally closes the project.

Tasks and Artifacts

Tasks Req’d Role Responsible

Deployment Yes Logistics Management

Defect Resolution Development

Test in Production Yes Testing

Artifacts Req’d Role Responsible

Project Closeout Document Yes Project Management

Questions to Answer

Has the system been deployed to production successfully?

Has the system been tested in production?

Have all defects identified been resolved?

Do the users understand how to get support on the product after the project has been

closed?

Does IT Operations have the necessary documentation and knowledge to fully support

this system?

Milestone

Deployment Complete Milestone

The deployment complete milestone culminates the deploying phase. By this time,

the deployed solution should be providing the expected business value to the

customer and the team should have effectively terminated the processes and

activities it employed to reach this goal.

The customer must agree that the team has met its objectives before it can

declare the solution to be in production and close out the project. This requires a

stable solution, as well as clearly stated success criteria. In order for the solution

to be considered stable, appropriate operations and support systems must be in

place.

<< prev : Stabilizing - Overview

Deploying - Tasks : next >>

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/2/05 2:23 PM | Contact Us

 IT Development

Deploying: Tasks

Deployment

This section describes Development and Engineering's responsibilities during the

actual deployment of the system to production. This could include either the

deployment of new files to a web server, or when a new server is first being used

by new customers. This may vary depending on the size of the project. The

project manager and other resources should use their discretion to determine

how this should be carried out.

The project manager and user education lead should be heavily engaged with the

users at this point in time. It might be useful to be physically present in their

department at the time of deployment. This gives them the ability to watch the

customers using the new system and react immediately to deployment issues or

other defects.

The developer (either system or application) should probably be onsite with the

NOC when the system is actually deployed and then should move to be onsite

with the customers to see them use the system.

The developer should also be available for the Verification and Testing Unit if

necessary.

Defect Resolution

In the deployment stage, there will be a period of time during which the number of

defects identified in the product will sharply increase. The bulk of these defects should

be identified and resolved before deployment to the production system, but it is

possible that some defects may slip through due to configuration differences or

limitations in testing resources available. When such defects are encountered

immediately following a deployment, the fixing of such defects will be considered

development's highest priority. No software maintainance requests (i.e. tickets) are

needed from the customer in order to repair these defects, however development may

choose to use such software maintainance requests to track the defects identified and

their resolutions.

Testing in Production

The Verification and Testing Unit will run the tests created during the Stabilizing Phase,

one last time on production to make sure that deployment was successful. If the

deployment does not pass the test(s), Developer(s), Project Manager and System

Developer may be contacted for generation of "defect resolution" patches under

Emergency mode.

<< prev : Deploying - Overview Deploying - Artifacts : next >>

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/29/05 10:12 AM | Contact Us

 IT Development

Deploying: Artifacts

Project Closure Document

Administrative closeout involves gathering and centralizing project documents, obtaining

signoffs, and communicating the finish of the project. It also provides a reference

source that can be used to improve the success of future projects. A communication

plan is created to inform all project stakeholders that the project has now been

closed.

The document should include the following:

Project Title Page

-Project Name

-Department

-Product

-Prepared by

-Project Team/Roles

Executive Summary

-Project Overview

-What were the original goals and objectives

-Success criteria

-Were the goals and objectives met

Project Goals

-Review the milestones and success of the project

-Outstanding issues, risks, and recommendations

-Lessons Learned (which processes worked well; which did not work well)

Why Project is being closed

-Completion/Canceled

-Closing Activities

Post-Project Tasks

-What actions were not yet completed?

-What deliverables are not yet achieved?

-Which training requirements are still outstanding?

Project Closure Recommendations

Gain project closure approval from the Project Sponsor, including agreement that the

project has fulfilled all of the requirements as documented and the Project Sponsor is

satisfied that all outstanding items have been satisfactorily addressed.

Project Approvals and Agreement

Product Sponsor and team members sign name and date the sign-off document

Service Level Agreement states:

In IT Development and Engineering, our agreement to you, the customer, is to

maintain any software that we have released for the university. If a problem occurs

with the current system, a Help Desk ticket should be submitted and a response will be

received by the customer within 24 hours. For any new requests, a Project Request

Form (located on the IT Development and Engineering web page) should be submitted

and the request will be prioritized for the next version of the product or for a new

product.

<< prev : Deploying - Tasks

Liberty University 1971 University Blvd. Lynchburg,VA 24502 (434)582-2000
Updated 6/29/05 10:12 AM | Contact Us

